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Classical electrodynamics and the definition of an energy 
tensor for a system of charged particles and electromagnetic 
fields 

M A Oliver 
Mathematical Institute, The University, Canterbury, Kent CT2 7NF, England 

Received 23 November 1977, in final form 2 February 1978 

Abstract. Using an invariant spatial volume element the energy-density tensor Tu” is 
integrated over a hyperplane orthogonal to the velocity V* of the observer. The resulting 
energy tensor Tu” for the system yields the momentum and energy of the system relative 
to a given observer in the usual way. It is shown that the usual conservation theorems for 
the momentum of a free field and the momentum radiated by an accelerated particle are 
recovered, but the expression obtained for the (bound) velocity-field momentum differs 
from the usual expression of this quantity given in the literature. The new definition of 
momentum results in a rational definition when applied to two or more particles, which is 
in contradistinction to the usual definition which cannot be generalised for two or more 
particles unambiguously. The definition of Tu” given here is the flat space-time speci- 
alisation of a definition previously given by the author in the context of general relativity. 
Thus a uniform prescription for the treatment of problems concerning energy and 
momentum is achieved together with the resolution of a long-standing conceptual 
problem. 

1. Introduction 

The tensor T’”” is knov,n by a variety of names, e.g. energy-momentum--stress tensor, 
stress-energy tensor, energy-momentum tensor, energy tensor. The components of 
T’”” are related to the density of momentum and the density of energy by contracting 
once and twice respectively with the unit vector tangent to the observer’s world line, 
V”. Thus T’””V,, gives the momentum density, and T’””V,V, gives the energy density. 
For a more detailed account of the interpretation of T’”” see Misner ef a1 (1973) 
p 131. For readers unaquainted with the geometrical description of physical quan- 
tities as invariants, and for whom some of the expressions given here might appear in 
an unfamiliar form, I have included a brief discussion of the geometrical formulation 
in an appendix. 

In order to obtain the energy, the energy density must be integrated over the 
appropriate spatial volume, and this must be done in an invariant way. Similarly the 
momentum is the momentum density integrated covariantly. This can be achieved by 
defining a spatial volume integral of the tensor T,” in a covariant way resulting in a 
new tensor 9’”’. The momentum and energy are obtained directly from P”L by 
contraction with V”. A natural name for T’”’ is the energy tensor (or energy- 
momentum tensor) of the system over which the integration is taken. I shall call T’”” 
the energy-density tensor in order to distinguish it from the energy tensor 3’””. 

0305-4770/78/0008-1535$02.00 @ 1978 The Institute of Physics 1535 



1536 M A  Oliver 

The definition of Tw“ which I give is the flat space-time specialisation of a 
definition for an energy tensor that I have previously given in general relativity (Oliver 
1977). In general relativity it is manifest that the energy-density tensor has a central 
role in the theory and thus forms a natural starting point for a definition of energy and 
momentum. Classical electrodynamics can be formulated so that the energy-density 
tensor is given a central role in which case the energy and momentum are defined 
quite naturally in terms of it. This way of formulating the theory has the philosophical 
advantage of aiding the methodological and structural unification of these two 
theories. 

In order to make the advantages of this approach clear I first describe the usual 
procedure. Conventionally the energy-density tensor T”” is contracted with an 
infinitesimal hyperplane element d u ”  . d g ”  = n ”lldull, where n ” is the unit time-like 
vector normal to the hyperplane a and pointing into the future, so / /dv+/ /=  - n , .  d a ” .  
The resulting infinitesimal vector T”” du, is integrated over the hyperplane U to give 

P”= T””da,.  J, 
P w  is taken for the momentum of the system, with the choice of cr depending on the 
physical system to which the definition is applied. It is this uncertainty in the 
specification of U which has led to ambiguities in the treatment of the momentum of 
many-particle systems. 

One subtle problem is how the measure of spatial volume should be defined. In (1) 
the measure da,  depends on the choice of U, but (+ is not specified as part of the 
definition; the hyperplane U is chosen differently in different applications. Whereas in 
the definition I give the hyperplane of integration is specified as part of the definition 
and is the same for every application. The measure of spatial volume which I use can 
be described as the magnitude of that part of du, orthogonal to the observer’s 
velocity. In order to show that this is indeed a rational choice I give a discussion of its 
definition and show how it is related to a corresponding definition of length; this I do 
in § 2. In 0 3 the definition of T”’ is given. 

In § 4 and § 5 I apply the formalism to the problems of the momentum of a free 
field and the radiation momentum from a particle, and show that the usual well known 
results follow. In § 6 the formalism is applied to the problem of the velocity-field 
momentum and the resulting expressions differ from the conventional ones to which 
they correspond; reasons for believing that this does not provide an argument against 
the proposed definition of T”“ are given. When applied to many-particle systems the 
definition of P’” results in an explicit and conceptually simple expression, whereas 
the conventional approach results in confusion. 
Notation. The vectors and tensors employed in this paper all reside on the four- 
dimensional manifold of space-time. The n-vectors (n s 4 )  formed by the wedge 
product A of n vectors are completely antisymmetric tensors of order n, thus a 
one-vector is just a vector. Vectors and tensors are usually denoted by a typical 
component, e.g. U * ,  T,“, but I do use a coordinate-free notation on occasion, e.g. U ,  T. 
The dot product is defined by U .  T = vAgA,Tru and the norm by 1IvII = / U .  ~ 1 ~ ’ ~ .  The 
dual of a vector, or tensor, is obtained by contraction with the Levi-Civita completely 
antisymmetric tensor. The dual is denoted by an asterisk; thus * F  is the dual of F. The 
signature of g,, is +2. In matters concerning electrodynamics my conventions are the 
same as Rohrlich (1965) with the exception that I have put c = 1 throughout and use T 
for the observer’s proper time and sk for the proper time of the kth particle. Where no 
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confusion arises I have usually omitted the subscript on s, e.g. v k ( s k ) =  U C ( S ) .  In the 
expressions involving integrals the coordinate systems are assumed to be rectilinear. 
This restriction could be dropped at the expense of complicating the mathematical 
expression of the integrals (see § 3). 

2. Invariant spatial volume 

There are two simple invariant measures of the spatial length of a rod: 

observer, due to Lorentz (1923); 

In figure 1, A and A’ are arbitrary events on the world lines L and L’ of the ends of the 
rod. B is the event on L‘ such that is orthogonal to the vector tangent to L’ at B. 
A and P are the events where the world lines L and L’ intersect the hyperplane Z 
which is orthogonal to the world line of the observer and intersects it at the event X at 
the observer’s proper time T. I sometimes exhibit T explicitly by writing Z as Z ( T ) .  

(1) what might be called its measure of intrinsic length which is independent of the 

(2) the observer-dependent measure of its length. 

Figure 1. 

- 
Write the vector AA’ = dx;  let U and V be the unit vectors tangent to L’ at B and L 

at X, respectively. From figure 1 it is clear that 

dl(v)=== ( I + U U ) .  dx 

dl(  V ) =  = ( I  + VV) . dx 

where I is the unit tensor. The lengths are the norms of these vectors, thus: 
(1) The invariant measure of intrinsic length is defined to be 

lldf(u)ll= ldx . dx +(U . d~)’1~/’. 

(2) The observer-dependent invariant measure of length is defined to be 

IJdl( V)ll= Idx . dx + ( V .  dx)’I1/’. 

It is easy to see that the intrinsic length measure exhibits the Fitzgerald-Lorentz 
contraction whereas the observer-dependent measure does not. 
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Consider a small parallelepiped shaped body with edges defined by the vectors 
AA', AA", AA"' where A, A', A", A"' are events on the world lines L, L', L ,  L"' of four 
adjacent vertices. Events C, Q on L ,  D, R on L"' corresponding to B, P on L' in figure 
1 enable vectors AB, AC, AD and AP, AQ, AR to be defined. The former set allow 
the construction of the intrinsic hyperarea, i.e. the intrinsic spatial volume, of the body 
analogously to the intrinsic spatial length. The latter set of vectors, which all lie in the 
hyperplane C, lead to the observer-dependent measure of spatial volume. The alge- 
bra is straightforward (Oliver 1977) and on writing AA' = dx', AA" = dx", AA"' = dx"' 
gives for the intrinsic spatial volume 

_._.- -_.- 

- - - 

dxll dxlfl dxlll' \ 

= * J ( - g ) v  A dx' A dx" A dx"'. 
u 2  dX12 dxl12 dx!,12 

u 3  dXlf3 d V(v) = * J ( - g )  det 

The factor J( -g )  is necessary in order that dV(u) is an invariant, and the sign is 
chosen to make d V(v) positive. The observer-dependent spatial volume is given by 
the same expression on replacing U by V, namely d V( V). 

Synge and Schild (1949, 0 7.3) make the important distinction between the metri- 
cal idea of volume and the more fundamental non-metrical concept of extension. The 
three-extension of the region of spacetime delimited by the three vectors dx', dx", dx"' 
is defined to be the three-vector d ~ ( ~ )  = dx' A dx" A dx"'. The dual of this three-vector is 
the vector hyperplane element d a  = *d7(3); in components this is da,  = 

is the completely antisymmetric tensor of Levi- 
Civita. Synge and Schild define the three-volume corresponding to the three-exten- 
sion as the norm of the three-extension, dq3) = lld~(3)11= lldall. 

Let n be the unit vector normal to the hyperplane containing dx', dx", dx"'. Since 
the orientation of d ~ ( 3 )  is normal to this hyperplane we have, from the definition of 
du(3), 

using the definition of dV(.) .  Also since d a  is normal to the hyperplane we have 
d a  = n du(3)= da(n),  where the argument of da (n )  indicates the orientation of the 
hyperplane element. Hence we have the useful result that 

dx" dx'" dx"'&, where 

dv(3)= *J(-g)n A dT(3)EdV(n) 

n dV(n)  = da(n).  ( 2 )  
In the literature either d a  or lldvll is used as the measure of spatial volume, as for 

example in (1). In order to see that this is, in general, a mistake consider the following 
correspondences. First remark that the vector dx and its norm I(dx/I can be written as 
the one-vector and one-volume (i.e. length) dT(l) and dvcl, respectively, and notice 
that IldxII is a space-time interval. Now consider the geometrical meaning of the three 
quantities dx, ds, IldllJ, i.e. dT(l), dq l ) ,  Ildlll, and compare them with the three quantities 
dqj) ,  d V. Neither the vector dx (= d7(1)) nor the space-time interval ds = I(dxII 
(= dq l ) )  can be given the role of the measure of spatial distance (length), whereas the 
vector dl  and its norm lldlll has just this significance. Therefore the correct measure of 
spatial volume must be the corresponding quantity defined in a three-dimensional 
hypersurface, namely d V. Manifestly dT(3) and dq3)  cannot in general be associated 
with the notion of spatial volume. It is the norms of the projections of d ~ ( ~ )  and dT(l) 
onto a specified hyperplane which are identified as the spatial volume and spatial 
length. 
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Synge (1965, ch I, 8 16) gives an account of the intrinsic length, and in ch VIII, 8 6 
an account of cross sections of world tubes, i.e. spatial volumes, but he does not 
demonstrate their relation, My dV(v) is what Synge calls the normal cross section of 
the world tube, and d V( V) is the cross section with normal V. 

The purpose of the argument of this section is to draw attention to the intimate 
relationship between Ildl(V)I/ and dV(V). Also to point out the misuse of du(3) as a 
measure of spatial volume. 

3. The energy tensor, momentum vector and energy invariant 

In order to obtain the energy tensor for an infinitesimal spatial region of space-time 
from the energy-density tensor the latter must be multiplied by the invariant measure 
of spatial volume corresponding to the region. No particles are necessarily present in 
the region so that the natural measure of the spatial volume of the region is d V (  V). 
Thus we obtain 

dYWu = TWU d V( V) 

for the energy tensor for the infinitesimal region. 

the energy tensor 
Since it is understood that rectilinear coordinates are used we can integrate to get 

S””(T)= TW” dV(V).  
( 7 )  

(3) 

V and Z ( T )  are defined as in 8 2. N.B. If curvilinear coordinates are to be used then 
shifters must be employed in order to allow for the change in the component values of 
T as it is moved to a common space-time event before integration, see Toupin (1956, 
8 3) and Ericksen (appendix to Truesdell and Toupin 1960, 88 16, 17). 

The momentum and energy are defined in terms of PLY by 

2Pp = S””V”, 8 = SWUVV v,. (4) 
To see that this is very reasonable recall that T””Vv and TWuVuV, are interpreted as 
the density of momentum and the density of energy (or mass-energy if you prefer), for 
details of this interpretation see Misner et a1 (1973, p 131). To obtain the momentum 
and energy these quantities must be integrated over the relevant spatial volume. Now, 
remark that the observer’s velocity V is independent of the integration and may be 
taken out from under the integral sign, thus leading to the expressions for 2P and 8 
given in equation (4). 

A simple example will illustrate the procedure. I construct the energy-density 
tensor for a particle for the phenomenon of intertia; from this will come the intertial 
momentum and kinetic energy. Recall the definition of the charge current density 

aD 

j ’ ( x ) = e ~ - _ S ( x - r ( s ) ) v ’ ( s ) d s  

which is manifestly covariant. Define T’”’ in an analogous way as 
m 

T*”(x)=m S ( X  -r(S))v’”(s)v’(S)dS I, 
where s is the proper time of the particle. This is the accepted definition. 
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With the energy-density tensor given in (5) and using the identity 
U . V ds d V( V) = d4x, proved below, we have from (3) 

F”” (7) = m [ v  (s (7)) . v]-’u (s (7))~ (s (7)). (6 ) 
where s(7) is the value of the proper time of the particle at the event where the world 
line of the particle intersects the observer’s hyperplane Z(7). 

have 
U .  V ds d V (  V) = ds U .  d r .  On transforming to the reference frame in which the 
particle is stationary the right-hand side becomes equal to dx’ dy’ dx’ dt’ = d4x’, recall 
that s is the proper time of the particle. But the invariant d4x‘ is simply d4x in the 
original reference frame, hence the required result. 

In order to prove that v . V ds dV(V)=  d4x note that from (2) we 

From (6 )  and (4) we have for the momentum and energy of the particle 

P(7) = mu(S(7))’ %(7)= mv(s(7)) .  v. 
This result is usually written in terms of the proper time of the particle. Invert s = ~ ( 7 )  
to get 7 = ~ ( s ) ,  then with P(T)  = P(r(s))  = P(s) the above equations can be written 

%(s) = mv(s) . V 

which are the usual expressions and give exactly the same numerical values. However, 
in this latter form it is not clear how to generalise them for many particles. 

P(s)  = mv (s), 

For n particles T is generalised to 
00 

T ( x ) =  Zl mk I-, s(X--k(S))Vk(S)vk(S)dS 

which leads to 
n 2 mkvk(sk(7)). v 

k = l  
9(7)= 1 mkvk(sk(T)), 

k = l  

where sk(7) (the subscript included here for emphasis) is the proper time of the kth 
particle at which the kth particle’s world line intersects the observer’s hyperplane 
X ( T ) .  Notice that for a given observer the prescription (3) uniquely defines for each 
particle the proper time for the term in the summand of F(7). In the usual formula- 
tion of special relativistic mechanics of many particles there is an uncertainty in how to 
specify the proper times of the particle momenta in the sum giving the total momen- 
tum, see for example Bergmann (1962, 120). This difficulty does not arise in my 
treatment which gives an unambiguous prescription. 

From (4), (3) and (2) we obtain 

There are two points concerning (7) which must be emphasised. First, that although 
very similar to the definition of momentum given in every textbook, namely equation 
(l), it is not the same. The domain of integration Z(7) depends on the observer so that 
P(7) depends on the observer relative to which it is to be calculated, whereas the 
choice of the domain of integration in the usual definition depends on the application 
and is justified by a variety of ad hoc arguments. Secondly, that (7) is not the 
definition of 9: B is defined in terms of F in (4), and F is defined in (3). One reason 
for this is to give the energy-density tensor the central role, the other reason being that 
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the measure of spatial volume d V (  V) has a simple geometrical significance which 
allows the tensor .T to be defined. By using d r (  V) the relation to spatial volume is 
obscured and .F cannot be defined. 

I shall take (7) as my starting point in the following three sections. 

4. Conservation of the total momentum of a free field 

Let O g U  be the energy-density tensor for a free electromagnetic field, 

0”” = (1/4v)(FwAFA” +;g””F‘*F,,) 

where the field F satisfies the Maxwell-Lorentz equations 

, y  = 0. F”*”,, = 4?rjg, *FW’Y 

Then, for a free field with j ”  = 0, 

o”y,y = 0.  

In order to see how P(T)  depends on T construct the integral 

I, w~,, d4x (9) 

where d4x is the invariant element of space-time hypervolume expressed in rectilinear 
coordinates, and R is the region of space-time bounded by the parallel hyperplanes 
X ( T ) ,  E(T’)(T < T ‘ ) ,  and a time-like hypersurface II at large distance with the surface 
normal pointing out of R. With the divergence theorem and (8), (9) becomes 

If 0 vanishes sufficiently fast in space-like infinity so that the integral over II vanishes, 
then from (7) equation (10) becomes 

P”(T) = P”(T’) 

i.e. P is independent of T.  

This is the same result as given by Rohrlich (1965). However, it should be noted 
that the orientation of C is unambiguously specified in the defining equation (7), 
whereas in the conventional approach (e.g. Rohrlich 1965, pp 89-91) the orientation 
of the hyperplane of integration is not built into the definition. 

5. Radiation momentum from a particle 

Using the radiation part of the energy tensor, Ot;”, defined by Teitelboim (1970) the 
radiation momentum emitted by a particle between its proper times T and T + A T  is, 
from (7), 

A S 5  (AX) = Ot;” d a v  
AX 

where AX is that part of C (defined in 0 2) lying between the future light cones with 
vertices on the particle world line events at T and T + AT. 
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Teitelboim (1970) has proved that the integral in (11) remains unchanged if C is 
translated parallel to itself or tilted or both, i.e. A p t ;  is independent of the observer 
and depends only upon the particle world line, 7 and Ar. (For details see Teitelboim 
(1970), especially the discussion related to his figure 1.) With this result the first part 
of Teitelboim (1970), 0 111 can be taken over giving 

d 8 5  2e2 
d7 3c 

-=- a ’aAv p .  

Hence, from (4) we obtain 

aAaAvpVp.  
dgrI 2e2 
d7 3c5 

-=- 

6. Velocity-field momentum 

The momentum of the velocity field of a particle cannot be defined by simply re- 
energy tensor). The reason for this is that the integral diverges on the world line of the 
placing T w y  in (7) by 0r” (=@@”-OK, where 0”” is the complete electromagnetic 
particle. Let 2‘ be the hyperplane (defined in § 2) with a covariantly specified 
neighbourhood containing the event at which the particle world line intersects X 
removed. Then define, as in (7), 

Before the limit of this neighbourhood shrinking to zero is taken the particle and 
velocity-field momenta must be renormalised, the mathematical impropriety of this 
trick should not be overlooked. 

Notice that the definition (12), which is a consequence of the general prescription 
given in 0 3 ,  is not in accord with the definitions given and used by Rohrlich (1965) 
and Teitelboim (1970). These authors define X‘ with its normal orientated parallel to 
the particle velocity v .  While their definition of 2’ certainly simplifies the computation 
it has a profound disadvantage: in general their definition cannot be generalised for 
two or more particles, for the orientation of C‘ is then ambiguous. With the definition 
of § 3 no such difficulty arises because the orientation of E’ is determined by the 
observer’s velocity V.  See my remarks at the end of Q 3. 

The calculation of the velocity-field momentum is central to the derivation of the 
Lorentz-Dirac equation. That the definition of 9,” in (12) is different from that used 
by previous authors suggests that the equation of motion (obtained from momentum 
balance) will differ from the well known Lorentz-Dirac equation, and it is not hard to 
see that this is so. Equally, a cursory examination shows that the Schott term will still 
exist so that the difficulties of runaway solutions and preacceleration will remain, as 
will the necessity for renormalisation. I hope to publish a paper dealing with these 
matters in the near future. 

7. Conclusion 

In this paper I have shown that my definition of an energy tensor, given previously in 
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the context of general relativity, provides a prescription for the treatment of momen- 
tum and energy and their conservation theorems in classical electrodynamics. This 
prescription has been shown to successfully reproduce the well known and desirable 
theorems of conservation of momentum for free fields and the rate of change of 
radiation momentum together with their associated results. For a single particle the 
rate of change of velocity-field momentum is different from that usually given, and this 
implies a modification of the Lorentz-Dirac equation of motion. These modifications 
will not eliminate any of the difficulties associated with that equation and its deriva- 
tion; a proposal to resolve these difficulties will be made in a future publication. 
Where the usual treatment becomes obscure, in treating the momentum of many 
particles, my prescription provides an explicit and conceptually simple alternative. 

The reader will have remarked that the results concerning momentum and energy 
could have been obtained by taking equation ( 7 )  as the definition of momentum 
together with (4) for the energy. Comparing ( 7 )  with (1) it is seen that this amounts to 
including the specification of (+ (as being C) in the definition (1). From this obser- 
vation it might be supposed that 0 2 and 9 3 are redundant and could be omitted. In so 
far as classical electrodynamics is concerned this argument has some force in that the 
energy-density tensor is in many ways peripheral to the theory. However, in general 
relativity the energy-density tensor has a central role and forms the natural starting 
point for a definition of energy and momentum; hence the significance of defining 9, 
and then P and 8 in terms of T. With general relativity in mind it is manifestly 
desirable to give the electrodynamic energy-density tensor a more central role in 
classical electrodynamics than it might otherwise be given and to use the same 
definitions of energy and momentum. It is this which provides the motivation for the 
form given to this paper. 

I have drawn attention to the invariant definition of spatial length and given the 
corresponding definition of invariant spatial volume. I have also attempted to make 
clear the relationship of the extension and its norm to the invariant definition of 
spatial volume. Without this background the true geometrical significance of the 
integral in ( 7 )  and the choice of C as the domain of integration is obscured. 
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Appendix 

In this appendix I give a brief account of how physically significant quantities can be 
expressed as invariants. 

The reference frame, the coordinate system, and the observer are distinct from 
each other. Thus the walls of a laboratory, the fixed stars, a satellite are examples of 
frames of reference. In the theory of special relativity the class of inertial reference 
frames is always used. Given a reference frame a coordinate system can be set up: 
either rectilinear or any curvilinear system. 

An observer is a time-like world line Lo in space-time and at any instant is 
characterised by an event X together with a tetrad of mutually orthogonal unit 
vectors. One of the tetrad is the vector tangent to Lo at X, namely V. TKe remaining 
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three form a space-like orthonormal triad in the local rest space of the observer, 
namely the hyperplane orthogonal to V, E. The space-like triad is only defined up to 
a rotation about the local time axis of the observer, V. For a detailed account of the 
observer see Sachs and Wu (1977, 5 2.1), albeit mathematically rather a sophisticated 
one. (N.B. My ‘observer’ is their ‘instantaneous observer’ with a space-like triad.) In 
the theory of special relativity the observer is usually taken to be a rectilinear world 
line and can therefore be put into correspondence with a particular inertial frame. 

There are two classes of theoretical entities which are regarded as physically 
significant, those which are: (i) observer-dependent, or relative; (ii) observer- 
independent, or intrinsic. For example, the energy of a particle is calculated relative 
to an assigned observer, whereas the magnitude of the momentum of one particle 
relative to another is intrinsic to the two particles. Both classes are independent of the 
coordinate system and reference frame. This independence is ensured in the theory 
by the use of the tensor calculus, preferably in a coordinate-free notation, and by 
expressing all physically significant quantities as scalar invariants. Of course a physical 
phenomenon, such as the motion of a system of particles, does not depend on the 
reference frame, the coordinate system, or the observer so that one might expect only 
intrinsic quantities to be physically significant. This is true insofar as the physical 
system is concerned, but it is convenient in the theory to define some quantities 
relative to an assigned observer, for example the energy. 

I now illustrate these remarks with two examples. First, the energy of a particle 
relative to the observer (X, V )  is E = - p .  V, where p = mu, and both tr and V are 
relative to the same (inertial) reference frame. Since E is a scalar invariant, neither a 
change of reference frame nor the choice of coordinates will effect its value; the form 
of E = - p  . V expresses this invariance explicitly. To see that E is indeed the energy 
let us consider the situation usually described in the textbooks. The reference frame is 
the observer’s reference frame, then using Galilean coordinates we have V’ = V2 = 
V3 = 0, V4 = 1,  and E = -p4 = p4 = mu ; this is the usual result. Since E = - p .  V is 
independent of the reference frame we can say that the energy depends on the 
momentum of the particle relative to the observer, and nothing else, see Misner et ai 
(1973, p 65) and Sachs and Wu (1977, B 3.1.2). 

Secondly, if the momentum of particle a is pa and of b is P b  then their relative 
momentum is P a - P b  and its magnitude is llpa-pblll which is a scalar invariant and is 
quite independent of the observer. 
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